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ABSTRACT

Switching algorithms for combining sequential codes usu-
ally come with bounds, relating their performance to that
of the best fixed strategy that switchesm times. The over-
head is parameterized by the number of outcomesn and
the number of switchesm; it may be difficult to judge
whether this is acceptable. We present an alternative algo-
rithm whose overhead does not depend onn; instead our
bound expresses the overhead in terms of the benefit of
switching in the first place.

1. INTRODUCTION

In 1998, Paul Volf and Frans Willems published an al-
gorithm that runs two separate source coding algorithms,
say, the Context Tree Weighting and LZ77 data compres-
sion schemes, in parallel, determining on-line how their
predictive models should be combined so that any part of
the data is compressed almost as well as if we used the
best of the two algorithms for it [1].

Around the same time, many related results on “ex-
pert tracking” appeared in the online learning community.
A general overview is provided in [2]; publications most
relevant to this work are [3, 4, 5, 6].

For all these approaches, performance guarantees of
the following form are given. LetLγ(xn) denote the num-
ber of bits a codeγ uses to encode outcomesxn = x1, . . . ,
xn. Fix two codesA andB with length functionsLA and
LB , and letLt denote the number of bits used by the al-
gorithm that switches betweenA And B at fixed times
t = t1, . . . , tm. For all tracking algorithms in the listed
references, bounds on the maximal performance differ-
ence are given. For example, for Volf and Willems’ al-
gorithm, one may show that

Lsm(xn) − Lt(x
n) ≤ nH(m/n) + 1

2
log n + 3, (1)

whereH(p) = −p log p − (1 − p) log(1 − p) is the bi-
nary entropy function. This bound can be interpreted as
the number of bits required to encode where the switches
occur.

Being valid foranytime sequencet and data sequence
xn, performance guarantees such as (1) are very robust:
no assumptions about the data, stochastic or otherwise,
are required. However, it can be difficult to relate the over-
head expressed by the bound to the benefit of switching in
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Figure 1. Example code length difference for prefixes

the first place. For example, suppose thatA starts out a
little better thanB — there is ann0 such thatLA(xn0) <
LB(xn0) − C; but B is better thanA in the long run —
LB(xn) ≪ LA(xn) from somen onwards. Then we can
improve our code length byC bits by switching once from
A to B at the appropriate time, but if we use Volf and
Willems’ algorithm to do so, this improvement is dwarfed
by the maximal overhead of(3/2) log n + O(1), so the
bound does not tell us whether or not using the algorithm
would be wise.

In our paper “Switching Investments” [7] we develop
an alternative strategy for which, roughly speaking, the
maximal impact of each pair of switches on the regret
is measured in terms of the benefit of having those two
switches in the first place. (The paper is presented in terms
of investment strategies, but the setting is equivalent to
coding, as explained in Section 4.) We will now look at
an example to explain the rough idea, before discussing
our algorithm and its regret bound in more detail in the
last two sections.

2. EXAMPLE

We have created some fictitious code lengths for coding
4 000 outcomes withA andB. The solid line in Figure 1
shows the differenceΛ(i) = LA(xi) − LB(xi) as a func-
tion of the numberi of processed outcomes. On the whole
codeB clearly outperforms codeA, but there are substan-
tial intervals where the situation is reversed. Ideally, we
would switcheverytime Λ changes direction, but that is



clearly not feasible. But it looks as if it might be worth-
while to switch from one code to the other at the points in-
dicated by the dashed black line, which can be thought of
as a regularisation, or smoothing, of the actual behaviour
of the code length difference.

With (1) we can bound the overhead in terms of the
numbers on the horizontal axis, which may or may not
have anything to do with the sizes of the fluctuations in
code length. Our main idea is to parameterize the ref-
erence strategy not by its switching timest, but instead
by a sequenceδ = δ1, . . . , δm specifying the number of
bits thatΛ must increase or decrease between subsequent
switches, as measured along the vertical axis. Note that
we can identify any sequence of local extrema using such
a sequence, and it provides the information we need to
switch at the appropriate times as we process the data se-
quentially. The strategy that corresponds to the dashed
line hasδ = 42, 6, 46, 14, 44, 55, 33, 13, 13.

3. REGRET BOUND

Our algorithm, with code length function denotedLsi, uses
a fixed prior density functionπ (that has to satisfy some
mild restrictions). We prove the following bound for allδ,
including the one highlighted in Figure 1:

Lsi(x
n)−Lδ(xn) ≤

m
∑

i=1

(

−log π(δi)
)

+(m−1)α+β, (2)

wherem is the length ofδ andα andβ are small con-
stants that depend on the used prior density function (for
example, forπ(x) = 3(x + 3)−2 we haveα = 0.042 bits
per switch andβ = 6.13 bits). Note that the second term
is constant per switch, and the last two terms are additive
constants; the main contribution to the regret comes from
the first term, which can now be interpreted as the number
of bits required to encodeδ (to an appropriate precision).

Comparing (2) to (1), we find that all dependence on
the sample size has disappeared; instead the overhead is
expressed in terms of thesizes of the fluctuationsof the
code length difference. If we use a fat-tailed prior, the
overhead is only logarithmic in the fluctuation size, which
means that if the fluctuations are sufficiently large our
switching approach is certain to yield an improvement over
A andB.

4. THE ALGORITHM

The algorithm is easiest to explain as the implementation
of a Bayesian prediction strategy. By the Kraft inequality,
each code length function has an associated probability
distribution such that the− log of the probability of a se-
quence of outcomes is equal to the code length. Thus, our
results can be stated either in terms of coding, or in terms
of prediction with logarithmic loss. In the paper we use a
third formalism, that of online investment — which turns
out to be equivalent yet again.

Now that we think about the set of reference codes a
set of random processesM = {Pδ | δ ∈ ∆}, where
∆ = [0,∞)∞ is the set of all infinite sequences of positive

differences, we can define a universal model by putting a
prior distributionπ on the elements ofM. The marginal
probability of a sequence of outcomes becomes

Psi(x
n) =

∫

M

π(δ)Psiδ(xn) dδ,

and as usual we can predict the next outcome by condi-
tioning

Psi(Xn+1 = x | xn) =
Psi(x

n,Xn+1 = x)

Psi(xn)
.

(From this probabilistic setting we can get back to coding
using e.g. arithmetic coding.) It is not immediately clear
that these predictions can be evaluated efficiently, but if
the priorπ is a product distributionπ(δ) =

∏

i π(δi), then
the height and direction of the last switch is a sufficient
statistic and we need to maintain only a linear number of
weights in the prediction process, reducing the running
time toO(n) per outcome. In fact, if the densityπ is cho-
sen to be exponential, even more weights can be lumped
together and the running time is further reduced to amor-
tizedO(1) per outcome.
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