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ABSTRACT

We compare two different formulations of the deblurring
problem: one (variational) is defined by minimization of
a single objective function and another one is based on
a generalized Nash equilibrium balance of two objective
functions. The latter results in the algorithm where the
denoising and deblurring operations are decoupled. For
image modeling we use the recent BM3D-frames. Simu-
lation experiments show that the decoupled algorithm de-
rived from the generalized Nash equilibrium formulation
and using BM3D-frames demonstrates the best numerical
and visual results and shows superiority with respect to
the state of the art in the field.

1. INTRODUCTION

Image restoration from blurry and noisy observations is
considered. Assuming a circular shift-invariant blur op-
erator and additive zero-mean white Gaussian noise the
observation model is expressed as

z = Ay + oe, )

where z,y € RY are vectors representing the observed
and true images, respectively, A is an N x N blur ma-
trix, € ~ N (Onx1,Inxn) is a vector of i.i.d. Gaussian
random variables, and o is the standard deviation of the
noise. The deblurring problem is to reconstruct y from z.

Image modeling lies at the core of image reconstruc-
tion problems. Recent trends are concentrated on sparse
representation techniques, where the image is assumed to
be defined as a combination of few afomic functions taken
from a certain dictionary. It follows that the image can
be parameterized and approximated locally or nonlocally
by these functions. To enable sparse approximations, the
dictionary should be rich enough to grasp all variety of
images. Clearly, the classical orthonormal bases are too
limited for this task, and one needs to consider overcom-
plete systems with a number of elements essentially larger
than the dimensionality of approximated images. Frames
are generalization of the concept of basis to the case when
atomic functions are linearly dependent and form over-
complete systems. There is a vast amount of literature
devoted to the sparsity based models and methods. An ex-
cellent introduction and overview of this area can be found
in the recent book [1].

The block-matching 3D (BM3D) image denoising, orig-
inated in [2], is formalized in [3] and [4] in terms of the
overcomplete sparse frame representation. The analysis
and synthesis developed in BM3D are interpreted as a
general sparse image modeling applicable to various im-
age processing problems.

In this paper we discuss two different variational for-
mulations of the image deblurring proposed in our recent
papers [3] and [4]: single objective function optimiza-
tion vs. fixed point of two objective functions (general-
ized Nash equilibrium). The latter approach results in the
algorithm where denoising and deblurring operations are
decoupled. It is shown by simulation experiments that the
best image reconstruction both visually and numerically
is obtained by the algorithm based on this decoupling. To
the best of our knowledge, this algorithm provides results
which are the state-of-art in the field.

1.1. BM3D-frame image modeling

It has been shown in [3] that provided a fixed grouping the
BM3D analysis/synthesis can be given in the matrix form
linking the image y € R™ and its groupwise spectrum
vectorw € RM, M > N, by the forward and backward
transforms

w=® y,y=V w. 2)

It is proved in [3] that the matrices ®7 ® and OO are
diagonal with positive items; ¥ ® = Iy« . The last for-
mula enables perfect reconstruction of the image y from
its groupwise spectrum w. It is shown also that ® and
W7 are full column rank matrices. The rows of ® consti-
tute a frame in RY, and the columns of the ¥ constitute
a frame in RY dual to ®. These frames are non-tight,
T . & # Myuyand T - W £ M vy, A > 0. Ifthe
group weights in BM3D synthesis [2] are equal to 1, then
T = (®T®) ' &7, however in general, ¥ # (3TH) ' 7.

Once BM3D groups are defined, the operators ®, &7,
W and U7 can be implemented efficiently since all of
them perform groupwise separable 3-D transforms. To
build the groups the block matching (grouping) procedure
from [2] is used. The BM3D-frames are nonlocal and data
adaptive, which make them quite different from the other
popular frames used for image modeling.

1.2. Variational formulations for deblurring

The analysis (using the analysis matrix ®) and synthe-
sis (using the synthesis matrix W) variational image re-
constructions are conventional for an overcomplete image
modeling [1]. For a Gaussian noise these reconstructions
can be given in the form of constrained optimization, re-
spectively, for analysis

- .1
y= argmym{ﬂ Iz — Ayls+7|wl, | @ = @y}, (3)



and synthesis

A o1 2
@ = argmin{5- |2 — Ayl +7- ], |y = ¥},

“

These two formulations are studied thoroughly in liter-
ature assuming that the frames are tight, ®T.® =1In.n,
W = ®”'. The last formula says that the analysis matrix ®
defines completely the synthesis one and vice versa. For
the non-tight BM3D-frames these matrices do not define
each other, and for image reconstruction we need to use
both the analysis and synthesis operators.

In this way we arrive to the combined analysis/synthesis
formulation of image reconstruction [4]:

1
@5) = argmin{y |z~ Ayl + 7, |

Py, y = Puw}, (%)

where the analysis and synthesis links between the image
and spectrum are considered as constraints.

For p = 1 and p = 0 (3)-(5) are defining l5-I; and
l2-lp optimization problems, respectively.

Let us replace the constraints in (3)-(5) by the quadratic
penalties with positive weights v,. In this way for (5) we
arrive to the objective function

w =

1
Ly.w) = ﬂnz—AyllSM-llwll,ﬁ (6)
1 2 1 2
— jw—®y|5+ — |ly — Pw|5.
3l = BYI3+ 5y — Wl

This £(y,w) is universal in the sense, that with v; — oo
and v, — 0 it corresponds to the synthesis approach

- 1 2
@ = argmin{y " ||z — A®wl, +7-flwll, ) ()

and with v, — oo and y; — 0 it corresponds to the analy-
sis approach

. o1 9
y= argmym{@ |z — Ayl + 7 [[®y],}. (8

With finite v, 7y, it defines a combined synthesis/analysis

approach.
1.3. Generalized Nash equilibrium (GNEP) problems

Let us briefly recall the basic formulations of the GNEP
[5]. Formally, the GNEP consists of N players, each player
v controlling the variables ¥ € R™. We denote by x

2l

the vector formed by all these variables: x = . ,
=N
which has dimension n = Zszl, and by x™" the vector
formed by all the players’ decision variables except those
of player v. To emphasize the v — th player’s variables
within x, we sometimes write (z¥ , x ") instead of x.
Each player has an objective function f, : R — R
that depends on both his own variables =" as well as on
the variables x~ of all other players. This mapping f,

is often called the utility function of player v, sometimes
also the payoff function or loss function, depending on the
particular application in which the GNEP arises.

Furthermore, each player’s strategy must belong to a
set X, € R™ that depends on the rival players’ strate-
gies and that we call the feasible set or strategy space of
player v. The aim of player v, given the other players’
strategies x ", is to choose a strategy =" that solves the
minimization problem

min f,(z”,x7") subject to z¥ € X,,(x7").  (9)

For any z", the solution set of problem (9) is denoted
by S, (x77). The GNEP is the problem of finding a vector
X such that

¥ e S,(x7") forallv =1,...N.

Such a point X is called Generalized Nash Equilib-
rium or, more simply, a solution of the GNEP. A point X is
therefore an equilibrium if no player can decrease his ob-
jective function by changing unilaterally x to any other
feasible point. If we denote by S(x) = N, S, (x7"),
we see that we can say that X is a solution if X € S(x),
i.e. if X is a fixed point of the point-to-set mapping S. If
the feasible sets X, (x ") do not depend on the rival play-
ers’ strategies, so we have X, (x~") = X, for some set
X, CR™ andallv =1, ..., N, the GNEP reduces to the
standard Nash equilibrium problem (NEP for short).

For non-empty and convex X, (x~") the existence of
the solution can be guaranteed provided some reasonable
assumptions (e.g. Theorem 6 in [5]).

The sets X, (x ") can be given by equality or inequal-
ity constrains, for instance, as

Xo(x7") ={z": ¢"(«",x7") <0} (10)

Recall, that a Pareto vector optimization is different
from the Nash equilibrium by a simultaneous optimization
on x. A vector X, ¥ € X,(X7"), is Pareto optimal, if
there exists no other vector y such that

foly) < fu(x), forallv =1,...,. N

and f;(y) < fi(X) for at least one 4, provided that y¥ €
X, (y~?). Itis known that the GNEP and Pareto optimiza-
tion, in general, give different solutions.

1.4. Deblurring as generalized Nash equilibrium prob-
lem

Let us formulate the deblurring for observations (1) as the
following GNEP problem [3]:

§ = argmin 575 ||z — Ay|[; subjectio [y — ¥ &5 <1,

@ =argmin7 - |w|, subjectto [jw — @yHg < g9,
w

(11

where €1, 2 > 0, and the inequality constrains ||y — ¥ d)Hg <

g1 and |jw — <I>§/||§ < g9 relax the equalities (2).

Two groups of variables y and w define two players in
the formulation (9) with the corresponding objective and
restriction functions. For the algorithm development we
replace (11) by unconstrained optimization problems:

¥ =argmin £ (y,®)
. ; (12)

@ = argmin Lo (¥, w)



Scenario PSF o?
1 1/ (1 +[2[[3) . i <7, 2
2 1/ (A +z[3), [l <7, | 8
3 9 x 9 uniform ~ 0.3
4 [14641]7[14641]/256 | 49
5 Gaussian with std = 1.6 4
6 Gaussian with std = 0.4 64

Table 1. Blur PSF and noise variance used in each sce-
nario.

where

Li(y,w) = (13)

1 2, 1 2
57 |7~ AYI + o lly — Wl
1
La(y.w) =7 [l + g o~ @y[ (14)

A solution (3, @) of (12) is a fixed point or Nash equi-
librium of the two objective functions £ and £5. Mini-
mization of the quadratic £1 on y results in a linear so-
lution which is a regularized inverse of the blur operator
A. Minimization of the non-quadratic L2 on w results
in a nonlinear hard- or soft-thresholding solution filtering
noise.

1.5. IDD-BM3D algorithm

The proposed iterative algorithm follows from the alter-
nating solution of (12):

Vi1 = argmin £y (y, w;)
y t=0,1,... (15)

Wiyl = arg HEH Lo(Yiy1,w)’

We call this algorithm Iterative Decoupled Deblurring BM3D

(IDD-BM3D). Details of the fast implementation of the
algorithm using FFT calculations as well as the converge
statement can be seen in [3].

1.6. Simulation experiments

Here some test-results from [3] are presented. We con-
sider six deblurring scenarios used as the benchmarks in
many publications. The blur point spread function (PSF)
h (z1,x2) and the variance of the noise o for each sce-
nario are summarized in Table 1.

Four proposed algorithms, namely: analysis-based,
synthesis-based, combined and IDD-BM3D are evaluated
in the scheme with the soft thresholding (the penalty norm
is [1) and unit group weights (g, = 1). Additionally, the
IDD-BM3D algorithm is tested with the adaptive group
weights using the soft and hard thresholdings.

In Table 2 we present improvement of signal-to-noise
ratio (ISNR) values achieved by each algorithm for the
Cameraman image. From these values we can conclude

that the synthesis-based algorithm performs essentially worse

than the IDD-BM3D algorithm, with the analysis-based
algorithm being in-between. Comparing the last two rows,
we conclude that hard thresholding enables better results
than the soft thresholding, and combined with the adaptive
weights it provides the best results among the considered
algorithms.

In the experiments with the combined analysis/synthesis
algorithm we optimize the parameters of the objective func-
tion (6). Nevertheless, the results obtained by this algo-
rithm are not better and only close to those obtained by the
analysis algorithm. The comparison is definitely in favor
of the IDD-BM3D algorithm based on GNEP. We wish
to note also that optimization of the parameters in the ob-
jective function (6) for the combined algorithm actually
gives the results close to those which can be obtained us-
ing the Pareto optimization. Thus, the simulation results
demonstrate also the advantage of GNEP versus the Pareto
optimization.

The experiments with the IDD-BM3D algorithm can
be reproduced using the Matlab program available as a
part of the BM3D package'.
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Method Scenario
| Thresh. | Weights g, 1 [ 2 [ 3 1 4 ] 5 ] 6
Cameraman (256x256)

BSNR 31.87 | 25.85 | 40.00 | 18.53 | 29.19 | 17.76
Input PSNR 22.23 | 22.16 | 20.76 | 24.62 | 23.36 | 29.82
Synthesis soft unit 630 | 460 | 7.88 | 2.06 | 298 | 2.84
Analysis soft unit 7.88 | 5.75 | 9.22 | 3.00 | 3.67 | 3.92
IDD-BM3D soft unit 817 | 6.17 | 9.38 | 3.17 | 3.83 | 4.12
IDD-BM3D soft adaptive 841 | 641 | 959 | 338 | 398 | 4.14
IDD-BM3D | hard adaptive 885 | 7.12 | 1045 | 3.98 | 431 | 4.89

Table 2. Comparison of the output ISNR [dB] of the proposed deblurring algorithms. Row corresponding to “In-
put PSNR” contain PSNR [dB] of the input blurry images. Blurred signal-to-noise ratio (BSNR) is defined as

10log1o (var (Ay) /No?), where var() is the variance.

Figure 1. Deblurring of the Cameraman image, scenario 3. From left to right and from top to bottom are presented
zoomed fragments of the following images: original, blurred noisy, reconstructed by CGMK [6] (ISNR 9.15), LO-AbS [7]
(ISNR 9.10), DEB-BM3D [8] (ISNR 8.34) and by proposed IDD-BM3D method (ISNR 10.45).




