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ABSTRACT

Consider n data sequences, each consisting of indepen-
dent and identically distributed elements drawn from one
of the two possible zero-mean Gaussian distributions with
variances Ay and A;. The problem of quickly identifying
all of the sequences with variance A; is considered and an
adaptive two-stage experimental design and testing proce-
dure is proposed. The agility and reliability gains in com-
parison with the existing related methods for quick search
over multiple sequences are quantified..

1. PRELIMINARIES
1.1. Model

Consider n observation sequences X7, ..., &), where for
eachi € {1,...,n}, Xy = {Xi(4);j = 1,2,...}. The
observations of each sequence ¢ € {1,...,n} are inde-
pendent and identically distributed (i.i.d) and obey one of
the two hypotheses:

Ho: Xi(j) ~ Qo = Nc(0,4p), j=1,2,... 1

Hy: Xz(J)NQléNC(OvAl)v J=12...
where Nc(a,b) denotes the complex Gaussian distribu-
tion with mean a and variance b, and A and A; are speci-
fied positive real numbers. Each sequence AX; is distributed
according to () or (01 independently of the rest. Also, we
assume that the hypothesis Hy occurs sparsely and assume
that for each sequence it occurs with prior probability ¢, .
To model the sparsity we also assume that €, = o(1).
Also, for m € {0, 1} let us define the sets

Hp ={ie{l,...,n}: X~ Qun} . ®)
1.2. Search Objective

The main objective is to use observations X7,..., X, in
order to identify 7' € N elements of H,. The conventional
non-adaptive sampling procedures use some pre-specified
number of observations and locate 7" sequences of inter-
est. This strategy is non-adaptive, in the sense that the
measurement process is fixed a priori and does not change
during the experiment. In contrast, we devise an adaptive
procedure in which the measurement strategy is adjusted
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sequentially such that future measurements use informa-
tion gathered from previous ones. We demonstrate that
such measurement adaptation substantially improves the
reliability and agility in identifying the T" sequences of in-
terest.

Clearly, for detecting multiple sequences drawn from
Qo there exists a tradeoff between agility and reliability
in the sense that achieving a higher level of detection re-
liability requires using more sampling resources, which
in turn results in delay in reliable detection. We charac-
terize this tradeoff in both non-adaptive and the proposed
adaptive sampling procedures. Comparing these tradeoffs
demonstrates the agility and reliability gains afforded by
the adaptive procedure. The analysis provided is asymp-
totic with respect to a large number of sequences, n.

2. NON-ADAPTIVE SAMPLING

The development of the non-adaptive sampling scheme
serves a two-fold purpose. On one hand this detection
scheme is also deployed in the detection phase of the adap-
tive procedure proposed in Section 3, and on the other
hand, it offers a baseline for assessing the gain yielded
by the adaptive procedure.

2.1. Non-Adaptive Sensing Procedure

Constructing a non-adaptive sampling procedure involves
two issues. One pertains to the experimental design, which
is the design of the information-gathering process. In our
setup the experimental design elucidates the distribution
of the sampling budget among the sequences X, ..., X),.
The second issue is to design a detector based on some op-
timality criterion. Prior to the sampling procedure all the
sequences are equally likely to be drawn from (Qy. Due
to the inherent symmetry and the sparse occurrence of Hg
we assume that the experimental design measures all se-
quences equally.

Given this experimental design, it is straightforward
to construct a detector that is optimal in the sense that
it maximizes the a posterior probability of successfully
detecting T" elements of Hy. Suppose that the measure-
ment budget is M € N per sequence. The observation
vector X; = [X;(j)]; for sequence i is a sample from a
mixture Gaussian distribution. Given the observation set
D, = {X4,...,X,}, the maximum a posteriori proba-
bility (MAP) rule for identifying 7" member of H, is for-
malized in the following remark.



Remark 1 The MAP rule for detecting T elements of Hg
is given by

ZZ,,M 2 argu_max PUCHo| D)

lu|=T
= i X112 3
arguzrglr;T;II | (3)

Hence, in order to locate 7" sequences of interest the MAP
detector requires only the sufficient statistic Y; = || X2
fori = 1,...,n. Corresponding to the sequence of ran-
dom variables {Y1, ..., Y, } we define {Y(y),...,Y(,)} as
the sequence of order statistics in an increasing order, e.g.,
Y(.m) represents the m!" smallest element of {Y1,..

2.2. Asymptotic Performance

Recalling the distribution of X;(j) given in (2), the suffi-
cient statistics Y; under hypothesis H,,, for m € {0,1} is
distributed as

Y; | Hp, ~ Gamma (M, A,,,) for i=1,...,n,

where Gamma (a, b) denotes a Gamma distribution with
parameters a and b. Clearly the detector makes a detec-
tion error if U, (\H1 # 0. Let us define u; and v; as
the indices of the ' smallest elements of the sets {Y; :
i €{1,...,n}} and {Y; : i € Hop}, respectively. From
Remark 1 the detection error probability is given by

Punif(n)

P (Z:{\u“if NHq 7£ @)

= 1—P(Z:{\umfﬁ7'[1=®>
= 1_P({U1,...,UT}QHO)-

Note that the event of having all the T" smallest measured
Y, belonging to Hy is equivalent to

Punif(n) =1- P(Y < _min )/7) . (4)

Assessing P, (n) as defined above relies on the proper-
ties of the order statistics of two sets of random variables.
The following lemma is instrumental for characterizing
the distributions of these sets of order statistics and eval-
vating Py, (n). This is a generalization of a well-studied
problem in the context of extreme value theory that con-
siders the first order statistic [1]. In this lemma, we give
the corresponding results for higher order statistics and
at the same time we also allow for distribution evolution,
i.e., the number and distribution of the involved random
variables changes simultaneously, for which the existing
results are not applicable.

LY

Lemma 1 Let {Y;}7, be a sequence of i.i.d. random
variables distributed as Gamma (M, a,,,) and denote its
corresponding sequence of order statistics by {Y(;)}i™ ;.

1
Let by, = ap, {%} " and for some T € N de-
fine the sequence of random variables W(’ZS = };“) for

t=1,...,T. Then as m — oo, W/ converges in distri-
bution to a random variable W ;) with cumulative density
function (CDF)

Qi)(w;m) = P(Wy <w) = 1_exp(_wM)

For the setting of Section 1.1, the following theorem char-
acterizes the asymptotic performance of the MAP detec-
tor. It also establishes the tradeoffs among the prior prob-
ability €, per sequence sampling budget M, and the ratio
of the variances of distributions ()¢ and Q1.

Theorem 1 (Non-Adaptive Tradeoff) When ¢, = o(1)
and ne, = w(l), the error probability of the MAP for
identifying T elements of Hg is given by

Pay(n) = P (U (VH1 #0)

1= (14 [(AfA)M -] L (5)
As expected, there exists a tension between reliability and
agility. On one hand, increasing the sampling budget per
sequence M favors reliability, as according to (5) it im-
proves the probability of successfully detection, and on
the other hand, imposes more delay in detecting 7' se-
quences distributed as (Jg. By using the result of Theo-
rem 1, we offer a necessary and sufficient condition on
the scaling of the ratios of the variances A; /A to guaran-
tee asymptotically error-free detection in the non-adaptive
sampling setting.

Corollary 1 (Non-Adaptive Variance Scaling) When ¢,
o(1) and ne,, = w(1), a necessary and sufficient condition
for P,,(n) — 0asn — oo is that 3—[1) scales with increas-

ing n as
Ay ul 1
n- (i) ®

3. ADAPTIVE SAMPLING
3.1. Adaptive Sampling

Our proposed adaptive sampling procedure has two phases,
namely the exploration phase and the detection phase. The
exploration phase, being an iterative procedure, is intended
to purify the set of the sequences to be observed carefully
for detecting the sequences drawn from (). This phase is
accomplished by successively identifying and eliminating
a group of sequences deemed to be drawn from ();. The
detection phase is performed after the exploration phase in
order to identify 7" sequences of interest among the subset
of candidate sequences retained after exploration. The de-
tection scheme deployed is identical to the MAP detection
scheme of Section 2.



The exploration phase proceeds in an iterative way. In
each iteration it further monitors the sequences retained
by the previous iteration and eliminates those deemed to
be drawn from @ least-likely. The core idea is that it is
relatively easy to identify sequences drawn from @, with
low-quality measurements (recall that €, is small). Each
iteration carries on by thresholding the observed energy
on each sequence retained by the previous iteration. The
threshold level depends only on , and is designed such
that at each iteration roughly half of the existing sequences
distributed as (); are eliminated, while almost all of those
distributed as ) are preserved. The output of each explo-
ration phase will have a more condensed proportion of the
desired sequences to the non-desired ones. Subsequently,
the detector developed for the non-adaptive procedure is
applied on this refined set of sequences in order to iden-
tify T" sequences distributed as ). This entire procedure
bears similarities with Distilled Sensing [2], however, the
analysis is substantially different. This is due to the differ-
ent sensing objective (identifying any arbitrary number of
sequences as opposed to [2] that aims to identify almost
all) as well as the underlying statistical model.

We show that the gains yielded by this adaptive proce-
dure can be interpreted in two ways. First we demonstrate
that when targeting at achieving the same level of detec-
tion reliability, the adaptive procedure requires substan-
tially less sampling budget, or equivalently it is substan-
tially more agile. Secondly, we show that under the same
sampling budget, and targeting identical detection relia-
bility, the adaptive procedure imposes less-stringent con-
ditions on how fast the power of the active users -,, must
scale with increasing n. This essentially indicates that for
some choices of -,, the adaptive procedure can guarantee
successful detection while the most non-adaptive proce-
dure fails to do so.

Let us define K as the number of exploration cycles
(iterations) in the exploration phase. Also denote the sam-
pling budget per sequence in the k*" exploration cycle by
Mj,. The exploration phase is initialized by including all
sequences for sampling and resumes as follows. In the
first iteration all sequences are allocated the identical sam-
pling budget of M;. The energy levels of all sequences
are compared against Aj(A1/Ag), where Ay is the me-
dian of the distribution Gamma (M7, 1). The sequences
for which the measured energy exceed this threshold are
discarded and the rest are carried over to the second it-
eration for further sampling. The same procedure is re-
peated throughout all K cycles. More specifically, in the
kth cycle all the sequences retained by the (k — 1) iter-
ation are allocated the identical sampling budget of Mj.
The energy levels of these sequences are compared with
A (A1/Ap), where Ay is the median of the distribution

Gamma (M, 1) and the exploration is performed via thresh-

olding as in the first iteration. Finally, after the exploration
phase, each of the remaining sequences is allocated the
sampling budget of Mg 1, and the MAP detection scheme
provided in Remark 1 is applied in order to detect T" se-
quences distributed as Q.

Exploration phase

1: Imput K € Nand {Mi,...,Mg11}.
2:  [Initialize the index set Go + {1,...,n}.
3: fork=1,...,Kdo
) e Xk|2 for i€ Gr_1
& Set¥i* = l—‘l—cx; ” for i¢ Gr_1
5: Obtain Gy, < {i € Gr—1 | Y < Ak(A1/A0)}.
6:  end for

Detection phase

7 secy K= [ IXETHE O for i€ gk
. ) +oo for ¢ Gk
A
Usa = {1 € Grc - Y/ < VY

9:  Output ﬁadap.

We set Gy = {1,...,n} and for k = 1,..., K, we
define Gy, as the set of the indices of the sequences that
are retained by the k" exploration cycle. Clearly we have
Gk C --- C G; C Gy and G contains the set of the
indices of the candidate sequences among which 1" se-
quences distributed as () will be detected. The set of
measurements defined for the non-adaptive scheme is ex-
tended for the proposed adaptive procedure as follows.
We define the set of measurements in the k** cycle as
DE2{XF: for i€Gyq} for k=1,....K+1.
The measurement sets D}, ..., DX are processed in the
exploration phase and the measurement set DX +1 is used
in the detection phase. Under hypothesis H,,, the obser-
vation sample X (j) for k = 1,..., K + 1 is distributed
as

XF() [ Hm = Ne(0,4), for i€Gpq. ()
We also define

YEE X512 for i€Gry and k=1,...,K+1.
®)

Equations (7) and (8) provide thatfork =1,..., K + 1

Y} | H,, ~ Gamma (M, A,,) for i€ Gp_1. (9)
For each k, corresponding to the sequence {Y }Zegk .
we define the sequence of order statistics {Y )}ZegA L

an increasing order such that Y(Z) represents the i*” small-
est element of this sequence. The adaptive sampling pro-
cedure is formally described in the table above.

3.2. Asymptotic Performance

We start by assessing the performance for any given value
of the exploration cycles K. The analysis of the adap-
tive sampling procedure follows the approach of [2], albeit
with the non-trivial modifications to deal with the differ-
ent objective and the different observation model. The fol-
lowing lemmas shed light on how the adaptive procedure
accomplishes the exploration cycles. Lemma 2 character-
izes the proportion of the sequences distributed as Q¢ that
are retained in each exploration cycle.



Lemma 2 Let mg = |Ho| and for k = 1,..., K define
my, as the number of sequences distributed as Qg that are
retained by the k" exploration cycle. Conditionally on
my—1 and for sufficiently large n the event

A1 /Ag
—— I mg_1 <mp <mp_q, fork=1,..., K,
<1+A1/A0 k-1 < my < mg_1, f
(10)
holds with probability at least 1 — exp (7%) for any

a > 0.

The next lemma shows that during each exploration cycle
almost half of the sequences distributed as (); are elimi-
nated.

Lemma 3 Let {y = |H1| and for k = 1,..., K define
Ly as the number of the sequences distributed as ()1 that
are retained by the k'" exploration cycle. Conditionally
on U1 and for sufficiently large n, forallk =1, ... K,
the event

1 1 1 1
— — U 1<l < | =4+ —|Vlr_ 11
(2 1ogn> b=l =tk = <2+logn> k-1, (D

holds with probability at least 1 — 2 exp (—(f(fg%;iz).

A careful use of the above lemmas establishes the perfor-
mance of the adaptive sampling in the following theorem.

Theorem 2 (Adaptive Tradeoff) When ¢,, = o(1) and
ne, = w(l), the error probability of the adaptive sam-
pling procedure for identifying T' sequences distributed as
Qo is given by

Pouy(n) 2 P (U 0 H #0)

=1- (1 + [(Al/AO)MK+1 . 2K671]71)_T

(12)

In order to quantify the gains yielded by the adaptive pro-
cedure, we compare the results for the non-adaptive and
adaptive schemes provided in Theorems 1 and 2. In par-
ticular we first characterize the agility factor, which we
define as the ratio of the sampling budgets required by the
adaptive procedure to that required by the non-adaptive
scheme with the aim of attaining identical asymptotic re-
liability levels in the asymptotic and the non-asymptotic
procedure, i.e., Py,(n) = P.(n),

Theorem 3 (Agility) When €, = o(1) and ne, = w(1),
the agility factor of the adaptive sampling approach with
Mn sampling budget is asymptotically upper bounded by
(2% + %), where K is the number of exploration cycles.

It is noteworthy that while the number of exploration cy-
cles K can be made arbitrarily large (but fixed as a func-
tion of n), increasing it beyond some point will affect the

agility very insignificantly. More specifically, for large
K, the agility factor will be dominated by the term %
This underlines the fundamental limit of the agility gain
yielded by the adaptive procedure.

An analog of Corollary 1 can be derived for the adap-
tive procedure, providing a necessary and sufficient con-
dition on the scaling of ’2—; for guaranteeing asymptotic
error-free detection of 7" sequences distributed as ). For
comparison purposes we assume that both adaptive and
non-adaptive procedures are granted the same sampling
budget.

Corollary 2 (Adaptive Power Scaling) When ¢,, = o(1)
and ne, = w(l), given that the sampling budget is Mn,
a necessary and sufficient condition for P,,,(n) — 0 as
n — o is that

A1 M/ ].
Ao_w< 2K€n> , (13)

where M' > 25 (M — 2) + 2.

Comparing the result above with that of Corollary 1 shows
that an adaptive scheme can cope with signals with much
smaller variances. More specifically, by noting that M’
is substantially larger than M, the variance scaling re-
quirement in the adaptive scenario, which is smaller than

w ( M }) becomes substantially smaller than its coun-

terpart in the non-adaptive scenario w ( N }) As are-

sult, there are scenarios where non-adaptive schemes fail
to successfully identify 7' sequences of interest, while the
adaptive scheme succeeds.

4. CONCLUSION

In this paper we have presented an adaptive sampling method-

ology for quickly searching over finitely many sequences
with the objective of identifying multiple sequences that
are distributed according to a given distribution of inter-
est. The core idea of the sampling procedure is to succes-
sively and gradually adjust the measurement process us-
ing information gleaned from the previous measurements.
Compared to the non-adaptive procedures, dramatic gains
in terms of reliability and agility are achieved.
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