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ABSTRACT

Insurance transfers losses associated with risks to the in-
surer for a price, thepremium. Considering a natural prob-
abilistic framework for the insurance problem, we derive
a necessary and sufficient condition on loss models such
that the insurer remains solvent despite the losses taken
on. In particular, there need not be any upper bound on
the loss—rather it is the structure of the model space that
decides insurability.

Insurance is a way of managing losses associated with
risks—for example, floods, network outages, and earthquakes—
primarily by transfering risk to another entity—the insurer,
for a price, thepremium. The insurer attempts to break
even by balancing the possible loss that may be suffered
by a few (risk) with the guaranteed payments of many
(premium).

In 1903, Filip Lundberg [1] defined and formulated
this scenario in its natural probabilistic setting as part of
his thesis. In particular, Lundberg formulated a collective
risk problem pooling together the risk of all the insured.
There is an underlying risk model—a probability measure
on loss sequences. Typically, the model itself is unknown,
but can be imagined to belong to a known class of risk
models. Suppose the insurance company sets some pre-
mium to be paid by the insured regularly—say, once at
the beginning of every time interval. The losses incured
by the insured will be of uncertain size in every time in-
terval, governed according to the unknown underlying risk
model. For a given class of risk models, how should the
premiums be set so that the insurer compensates all losses
in full, yet remains solvent?

Related to the insurance problem is thepricing prob-
lem that several researchers [2, 3] have considered for the
Internet—these adopt, among other techniques, game the-
oretic principles to tackle the problem. A different ap-
proach, including that of Lundberg [1] involves studying
the loss parametrically, using, for example, Poisson pro-
cesses as the class of risk models. A more comprehensive
theory of risk modeling has evolved [4] which incorpo-
rates several model classes for the loss other than Poisson
processes, and which also includes some fat tailed distri-
bution classes.

The later approach is very reminiscent of work in prob-
ability estimation, universal compression and prediction.

Lately, there has been a lot of focus on choosing model
classes for new applications such as language modeling,
text compression, clustering and classification. Researchers
have come up with new classes of models,e.g. [5, 6], as
well as theoretical and practical approaches that balance
the complexity of the model classes with their description
power [7]. In particular, one would like to use a model
class that is as general as possible, and is yet tractable.

This focus in compression literature is very pertinent
to a new slew of scenarios for risk management. In set-
tings like network outages, it is not clear what should con-
stitute a reasonable risk model in the absence of usable
information about what might cause the outages. If we
are going to model these risks, how does one choose a
class that is as general as possible, yet, one on which the
insurer can set premiums to remain solvent?

A preliminary question is, then, what are necessary
and sufficient conditions for a class of measures on infinite
loss sequences to beinsurable? In this paper, we provide a
partial answer. If losses can be modelled asi.i.d. samples
from a setP of distributions we determine a necessary and
sufficient condition onP for insurability.

We adopt the collective risk approach, namely, we ab-
stract the problem without loss of generality to include just
two players in the insurance game—the insured and the in-
surer. We denote the sequence of losses by{Xi}i≥1

, and
we assume thatXi ∈ N for all i ≥ 1, whereN denotes the
set of natural numbers,{0, 1, 2, , . . . ,}. P∞ is a collec-
tion of measures on infinite length loss sequences. In this
paper, we deal with onlyi.i.d. measures. Consequently,
we denote byP the set of distributions onN obtained as
single letter marginals ofP∞.

Let N
∗ be the collection of all finite length strings of

natural numbers. The insurer’sscheme Φ is a mapping
from N

∗ → R
+, and is interpreted as the premium de-

manded by the insurer from the insured after a loss se-
quence is observed. The insurer can observe the loss for
a time prior to entering the insurance game. However, we
require the insurer enters the game with probability 1 no
matter what loss models are in force, and the insurer can-
not quit once entered.

We adopt another abstraction without loss of general-
ity: at any stage if the insurer is surprised by a loss big-
ger than the premium charged inthat round, the insurer



goes bankrupt. To see why this simplification does not
involve any loss of generality, imagine the sequence of
premiums set in the paper to represent the cummulative
premium thus far.

To eliminate trivial schemes that do not enter the game
at all, we require that for allp ∈ P, the insurer enters the
game with probability 1.

A classP∞ of measures is insurable if∀ η > 0,
there exists a premium schemeΦ such that∀ p ∈ P∞,
p(Φ goes bankrupt) < η and if, in addition, for allp ∈
P∞, limn→∞ p({Xn : Φ(Xn) < ∞}) = 1.

In Section 2, we consider an example each of insurable
and non-insurable classes.

1. RESULTS

We model the loss at each time by numbers inN = {0, 1, . . .}.
A loss distribution is a distribution overN, and letP be
a set of loss distributions.P∞ is the collection ofi.i.d.
measures over infinite sequences fromN such that the set
of marginals overN they induce isP. We callP the set of
single letter marginals of P∞. Eachp ∈ P is assumed to
have finite support, and thespan of p ∈ P is the highest
number which has probability> 0 underp.

An insurer’sscheme Φ is a mapping fromN
∗ → R

+,
and is interpreted as the premium demanded by the insurer
from the insured after a loss sequence is observed. For
convenience, we assumeΦ(xn) = ∞ on every sequence
xn of losses on whichΦ has not entered.

Note however that the supremum over all distributions
p ∈ P of the span ofp need not bounded. Thus, we do not
assume an upper bound on the possible loss.

The crux of insurability is this: we would like close
distributions to be similar in their span. We first define
what distributions are close, followed by what distribu-
tions have “similar” span. We will then specify the neces-
sary and sufficient conditions for insurability.

1.1. Close distributions

Insurability ofP∞ depends on the neighborhoods of the
probability distributions among its single letter marginals
P. The relevant “distance” between distributions inP that
decides the neighborhood is

J (p, q) = D

(

p||
p + q

2

)

+ D

(

q||
p + q

2

)

.

1.2. Cummulative distribution functions

In this paper, we phrase the notion of similarity in span in
terms of the cummulative distribution function. Note that
we are dealing with distributions over a discrete (count-
able) support, so a few non-standard definitions related to
the cummulative distribution functions need to be clari-
fied.

For our purposes cummulative distribution function of
any distributionp is a function fromR → [0, 1], and will
be denoted byFp. We obtainFp by first definingFp on
points in the support ofp and the point at infinity. We

defineFp for all other points by linearly interpolating be-
tween the values in the support ofp.

LetF−1
p (1) be the smallest numbery such thatFp(y) =

1, and letF−1
p (x) = 0 for all 0 ≤ x < Fp(0). Note that

for 0 ≤ x ≤ 1, F−1
p (x) is now uniquely defined.

Two technical observations are in order since we are
dealing discrete distributions. Consider a distributionp
with supportA ⊂ N. Forδ > 0, let (T for tail)

Tδ = {y ∈ A : y ≥ F−1(1 − δ)},

and let (H for head)

Hδ = {y ∈ A : y ≤ 2F−1(1 − δ/2)}.

It is easy to see that

p(Tδ) > δ andp(Hδ) > 1 − δ.

Suppose, for someδ, F−1
p (1 − δ) > 0 and the premium

is set toF−1(1 − δ), the probability underp of the loss
exceeding the premium is≥ δ. If the premium is set to
2F−1

p (1 − δ/2), the probability that the loss exceeds the
premium is≤ δ. We will use these observations in the
proofs to follow.

1.3. Necessary and sufficient conditions for insurabil-
ity

Existence of close distributions with very different spans
is what kills insurability. A scheme could be “deceived”
by some processp ∈ P∞ into setting low premiums,
while a close enough distribution lurks with a high loss.
The conditions for insurability ofP∞ are phrased in terms
of its single letter marginalsP.

Formally, a distributionp in P is deceptive if ∀ neigh-
borhoodsǫ > 0, ∃ δ > 0 so that no matter what function
f : R → R is chosen,∃ a bad distributionq ∈ P such that

J (p, q) ≤ ǫ

and
F−1

q (1 − δ) > f(F−1
p (1 − δ)),

2. EXAMPLES

The setN∞ is the class ofi.i.d. processes whose single
letter marginals have finite moment. Namely,∀p ∈ N∞,
EpX1 < ∞.

Theorem 1. N∞ is not insurable.
Proof Note that the loss measure that puts probability 1
on the all-0 zero sequences exists inN∞. Since we con-
sider only schemes that enter with probability 1 no matter
what p ∈ N∞ is in force, every insurer must therefore
enter after seeing a finite number of zeros.

Fix any scheme. Denote the premiums charged at time
i by Φ(Xi). Suppose the scheme enters the game after
seeingN losses of size 0. To show thatN∞ is not insur-
able, we show that∃η > 0 such that for all schemesΦ,
∃p ∈ N∞ such that

p( Φ goes bankrupt) ≥ η.



Fix someδ = 1 − η. Let ǫ be small enough that

(1 − ǫ)N > 1 − δ/2,

and letM be a number large enough that

(1 − ǫ)M < δ/2.

Note that since1 − δ/2 ≥ δ/2, N < M .
Let L be greater than any of premiums charged byΦ

for the sequences0N , 0N+1, . . . 0M . Let p ∈ N∞ satisfy,
for all i,

p(Xi) =

{

1 − ǫ if Xi = 0

ǫ if Xi = L.

For the processp, the insurer is bankrupted on all se-
quences that contain lossL in between theN ′th andM ′th
step. The sequences in question have probabilities (under
p)

(1 − ǫ)N ǫ, (1 − ǫ)N+1ǫ, . . . , (1 − ǫ)N+M−1

and they also form a prefix free set. Therefore, summing
up the geometric series and using the assumptions onǫ
above,

p( Φ is bankrupted) ≥ 1 − δ/2 − δ/2 = η. 2

One can verify that every distribution inN∞ is decep-
tive.

A monotone distribution on numbers satisfies for alli,
probability ofi ≥ probability ofi+1. LetM∞ be the set
of all monotonei.i.d. loss processes with finite support. It
will follow from Section 3 that

Theorem 2. M∞ is not insurable. 2

The above results mean that while insurability seems
related to weak compressibility [8], it is not identical.

ConsiderU , the collection of all uniform distributions
over a finite support of form{m, . . . ,M}, with m andM
being arbitrary. Let the losses be sampledi.i.d. from one
of the distributions inU—call these processesU∞.

Theorem 3. U∞ is insurable.
Proof If the threshold probability of ruin isη, set the
premiumsΦ as follows. For all sequencesx with length
≤ log 1

η
+ 1, Φ(x) = ∞. For all sequences longer than

log 1

η
+ 1, the premium is twice the largest loss observed

thus far. It is easy to see this scheme is bankrupted with
probability≤ η. 2

3. NECESSARY AND SUFFICIENT CONDITION
FOR INSURABILITY

Note that according to the conventions adopted with defin-
ing cummulative distribution functions in Section 1.2, if
for a sequencex, F−1

q (1 − δ) > Φ(x), the schemeΦ will
be bankrupted with probability≥ δ in the next step.

P∞ is a set ofi.i.d. measures over infinite sequences
from N, and letP denote the collection of their single
letter marginals.

Theorem 4. P∞ is insurable iff nop ∈ P is deceptive.
2
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Works of Harald Craḿer edited by Anders Martin-
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