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ABSTRACT

This paper examines Bayesian two-part coding schemes
as tools for parameter estimation and model selection. The
Wallace-Freeman message length approximation to strict
minimum message length can be used to obtain two-part
message lengths. However, this approximation relies on
some strong assumptions regarding the likelihood func-
tion and prior distribution which do not hold for a large
range of models. We present a new two-part message
length formula that is more widely applicable than the
popular Wallace—Freeman message length approximation,
while remaining significantly easier to compute than the
exact strict minimum message length procedure.

1. MML TWO-PART CODES

Consider the problem of choosing a plausible explanation
for some observed data y™ = (y1,...,y,) € Y™ C R™.
The possible explanations are the distributions, or (fully
specified) models, contained in a countable set of para-
metric model structures v € I'. Let p,(y™|@) denote the
model!, in model structure ~, indexed by € B, C R-.
The minimum encoding approach [1, 2] to inference sug-
gests that the model that most compresses the data is the
most plausible explanation. One way to compress the data
is by two-part coding, in which the model and the data are
compressed together as a two-part message. This idea is
central to the minimum message length principle (MML).
The MML principle is explicitly Bayesian in nature, so
we further assume that a suitable prior distribution, 7~ (8),
0 c ©, exists forall y € T".

The first part of the message, or assertion, states which
model, p.,(-|@), from the structure -, is to be used to com-
press the data. The second part, or detail, states the data
y" using the nominated model from . Let the length of
these two terms be denoted by I1(0;+~) and I(y™|6;~), re-
spectively. Further, let I(-y) denote the length of a pream-
ble code stating which structure from I is being used. Es-
timation of both a model structure, as well as the model
parameters, may be simultaneously performed by solving

v€ET,0€0,

'We acknowledge that this use of the term “model” differs from much
of the traditional statistical literature. This is done to keep the terminol-
ogy in this paper consistent with the MML literature.

In the strict MML (SMML) procedure, the assertion and
detail codes are constructed so that for a given structure v,
the expected joint codelength is minimised, the expecta-
tion being taken with respect to the marginal distribution
of the data. The optimisation problem implicit in this min-
imisation is in general NP-hard [3], and thus the procedure
is impractical for all but the simplest of problems.

1.1. The Wallace-Freeman Codelength

Under suitable regularity conditions, Wallace and Free-
man proposed an approximate codelength formula which
we shall refer to as MMLS87 [4]. For a structure v with k
free parameters, the MML87 assertion and detail lengths
for a model 8 € O, are

k
Is7(8;7) = —log (J) + §1ng<6k, (1)

+
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is the Fisher information matrix and x, is the normalised
second moment of an optimal quantising lattice in k di-
mensions. Wallace has shown that if the local curvature
of the prior distribution 7., (-) is “small” in comparison to
the curvature of the negative log-likelihood, the MMLS87
codelength (1-2) is virtually indistinguishable (pp. 230-
231, [1]) from the exact SMML codelengths.

The Wallace—-Freeman approximation is computation-
ally tractable. However, the accuracy of the approxima-
tion depends crucially on the behaviour of the likelihood
function and the prior. If the Fisher information matrix is
near singular, or the curvature of the prior is too great, the
MMLS7 codelength can be a poor approximation to the
SMML codelength. This paper introduces a new two-part
codelength formula, named “MMLO0S8” after the year of
its introduction [5], that is robust to these problems, while
remaining significantly easier to compute than the exact
SMML codes.

2. RANDOM CODING AND MMLD

Is7(y"10;v) = —logp,(y"|0

where

2 log p, (y™16)

J,y(a*) = —Eg-+ |: 9000’

We now discuss the MMLD approximation [6] that was
specifically proposed to provide a more robust alternative



to the MMLS87 approximation, and which forms the ba-
sis for the new MMLOS codelength presented in Section
3. We provide a derivation of the MMLD codelength that
differs from the one in [1] (pp. 210-213), and discuss how
data may be transmitted using a model structure v with-
out the need to perform a complete discretization of the
parameter space ©. by using Wallace’s ingenious proce-
dure of random coding.

2.1. Random Coding

To transmit data y™ via random coding it is required that
both the receiver and transmitter have access to a pseudo
random number generator capable of sampling from the
prior 7 (-), and that both generators are initialized with
the same seed. The transmitter repeatedly samples models
from the prior distribution until they generate one that lies
inside a set S C ©,. The transmitter then sends the num-
ber of draws required to arrive at the model, say d, to the
receiver using a universal code for the integers, with code-
length [*(d). This is the message assertion. The receiver
then makes d draws from their random number generator
to arrive at the same parameter vector. The transmitter
may then use this model, say 6, to send the data; this is
the detail of the message. The total message length is then

I(y",d,04;7) =1"(d) — log py(y"(6a)-

The length of the code required to transmit a string y"
using random coding is a random variable that depends
crucially on the choice of S. One wishes for the messages
to be short on average and so .S is chosen to minimise the
average expected random coding message length, i.e.,

arg min {E [I"(d) — log py(y"|60a)]},
sce.,
where the expectation is taken with respect to the random
variables (d, 84). The MMLD message length is found by
approximating E [I*(d)] and then solving for the minimis-
ing set S. This is detailed in the next section.

2.2. MMLD and Average Codelengths

Observe that the random variables d and 6 are indepen-
dent; it thus suffices to find the expectations for both com-
ponents of the random coding message length individu-
ally. Let

0(5) = PO € 5) = [ m,(6)a0
s

be the probability that a model 8 sampled randomly from
my(-) lies in S. The number of draws, d, required for a
model to fall in S is a random variable following a geo-
metric distribution with parameter g.,(.5). To transmit d to
the receiver we use a universal code for integers, such as
the log-star code [2], or Wallace tree code [1]. The log-
star codelength for integer d is

I*(d) =logd +loglogd + . ..

where the iterated logarithms continue until they become
negative. Given that E [d] = 1/¢,(S) and var(d) = (1 —

4+(9))/q-(S)?, we can use the approximation E [I* (d)] =
log1/¢,(S) + O(loglog 1/¢4(S)). Using only the domi-
nant term we arrive at the expression for the average length
of the assertion of a random coding message based on the
set S, I(S;~y) =log1/¢,(S). It remains to determine the
average length of the detail. The distribution of 8y, i.e.,
the first randomly generated model to lie in S, is

_ my(6q)
p(0q) = W,

so that the average detail length of a message based on the
set S'is given by

0,€8,

1
I"18:9) = 755 [3 7(8) logp, (y"[0)d6.  (3)
Yy

The average total random coding message based on S is
I(y™, S;v) = I(S;7) + I(y™|S;). It is informative to
define the “round-off” error as

ry(y", 8) = I(y"|S;7) + logp, (y"0nr.),  (4)

where Oy, = arg maxgece. {P,(y"|0)} is the maximum
likelihood estimate. The quantity (-, .S) can be inter-
preted as the increase in the length of the detail over the
“maximum-likelihood” code incurred by using a quan-
tised estimate, represented by S, in place of O, to trans-
mit the data. Let Q2 (y™) denote the set that solves

min {I(S; v) — log py (y"|0nr) + 74 (¥", S)} Q)
sce,

In the MML literature, this set is called the uncertainty
region, as it includes all models that are considered to
be plausible explanations of the data. The MMLD code-
length is then given by In(y™;y) = I(y™, Qy(y"); 7).
Examining the minimisation problem (5) shows that the
MMLD codelength can be interpreted as balancing the ac-
curacy to which maximum likelihood estimates are stated
against the evidence in the data.

Unfortunately, direct replacement of MMLS87 by the
MMLD approximation is not possible. The MMLD code-
length may be used to select a model structure -, but of-
fers no guidance for selection of a suitable point estimate.
This is because the MMLD messages are essentially (re-
dundant) one-part codes. The random coding procedure
on which they are based is in theory two-part; however,
the MMLD procedure, by integrating out the random vari-
ables (d, 8,) to arrive at a sensible measure of message
length, removes the ability to transmit the data using an
arbitrary model from ©,,. The data alone determines the
uncertainty region {2, (y™), and in this sense the MMLD
message length offers a codebook over )" only. The next
section proposes an new message length formula that ad-
dresses this issue.

3. THE MML08 CODELENGTH

The main contribution of this paper is to present a general-
ization of the MMLD message length equation that allows



one to derive point estimates explicitly by minimising the
joint model and data codelength. In this way it acts as a
replacement for MML87 when the Wallace-Freeman as-
sumptions do not apply, and is significantly easier to com-
pute than the exact SMML codelength.

3.1. Model Cost

Define the quantity
Dp(y";7) =1og1/¢y (2, (y") + 75 (v 24 (y"))

so that Ip(y™;y) = Dp(y™;v) — log py(y"|0mr). We
call Dp(-;7) the model cost, it is the extra number of nits
(nats) required to name the model used to transmit the data
y", the “model” being described by the uncertainty region
Q,(y™). In the case of MMLD the model cost is also the
regret of the MMLD message length with respect to the
“ideal” maximum likelihood codelength, though this is in
general not the case for other MML approximations. In
particular, comparing Dp(y™;~) to the MML87 model
cost

1 k
De7(8;7) = — log my (8)+ log [J,(8)[+3 (log ki +1)

it is clear the fundamental difference between MMLS87
and MMLD is that Dg7(6; ~) depends on the chosen model
6 used to encode the data, while Dp(y™; ) depends on
the data, and only offers a measure for complexity of a
model structure . Thus, the MMLS87 codelength allows
one to perform point estimation and model structure selec-
tion by minimising the sum of model cost for a particular
model, say 8 € ©,, and the negative log-likelihood of the
data using this model, i.e.,

{%7, 987} =argmin {I(y) + Ds7(6;7) — logp,(y"|0)} .

v€T,0€0,
(6)
It would clearly be advantageous to have an analogue of
(6) for a robust MMLD-like approximation.

3.2. MMLO08 Message Length

Examining (3) it is clear to see that y™ enters the round-
off function (4) only through the negative log-likelihood
function. Thus, following the arguments of Wallace and
Freeman, we wish to find the expected increase in code-
length due to quantisation of a model 8* to some region
S. Rewrite 7, (y™, S) as

L e 2716)
qv(S)/s /01 gpfy(yanL)da

As in the Wallace—Freeman approximation [4], we can re-
place the dependency on a particular string y™ by a de-
pendency on a particular model 8* by assuming that the
data y™ ~ p,(-|@*), and finding the expected inflation in
codelength due to quantisation of 8*. The average code-
length for coding data y™ ~ p,(-|6*) using model 6 is
simply Eg-+ [log 1/p~(y™|@)], and this expression obtains
a minimum when @ = 6* (the entropy). Thus, the ex-
pected excess codelength for coding data y™ coming from

T’Y(ynas) - -

P~(-]0*) using model 8 in place of the optimal model 6*

N L)

which is the well known Kullback—Leibler (KL) diver-
gence [7] between a generating model 8* and approximat-
ing model 6. Note that the KL divergence in (7) is defined
for n data points, which in the i.i.d. case is simply n times
the KL divergence for a single datapoint.

Now the overall expected increase in codelength due
to quantisation of the model 8 to the region S is given by

©
=—— [ m(0)A,(67]16)d0,
¢(8) Js K
and we can find the quantisation cell that minimises the
sum of the assertion plus the expected round off by solving

Q,(0") = argmin {log 1/¢,(S) +7,(0%,5)} .
sce,

(07, S)

We call the set €2, (6*) the expected uncertainty region for
the model 8*; in contrast to 2, (y™), it depends only on
the expected behaviour of the model 8*. We now define
the MMLO08 model cost for a model 8* by

Dos(07;7) = —log gy (2,(07)) + 7 (67,02,(67)) .
(®)
Given that Dog(6*; ) depends only on the model, 8*, and
not on the data y™, we can compute a valid joint message
length for any pair (0*,y™) € O, x V"; this is

Tos(y™,0%;7) = Dog(07;) —logp,(y"[0%).  (9)

We call (9) the “MMLO08” message length approximation.
Explicit point estimation, as well as model structure es-
timation, can be performed for a given y™ by compar-
ing candidate models 8* € ©,, v € I, on their joint
MMLO8 codelength, and choosing the model which yields
the shortest message length, i.e.,

{%8, 008} = argmin {I(v) + Ips(y",0%;7)}. (10)
vy€r,0*€O,

From (10) we see that the MMLO8 codelength balances
the accuracy to which some particular model, 8* € O., is
stated, against the evidence for that particular model that
is present in the data. This is in contrast to the MMLD
codelength, which implicitly quantises the maximum like-
lihood estimate. The MMLOS8 message length may be split
into assertion and detail components

Tog(0%;7) = —log A (Qv(e*)) )
Tos(y"|07;7) = —logp, (y"607) + 1 (67,92,(07)).

The MMLO8 message length approximation generalizes
the MMLD approximation, which can be recovered by
setting 0% = O, and replacing the KL divergence with
logpw(y”|éML)/pw(y”|0), i.e., the empirical KL diver-
gence.

Finally, we note that the MMLOS8 model cost is very
robust in the sense that Dos(6*;y) > 0 for all 0 € ©,.
In contrast, the MMLS87 model cost can be (nonsensically)
negative if the conditions under which the MMLS87 ap-
proximation was derived are violated.



4. PROPERTIES OF MML08 CODELENGTHS

Assuming that the prior distribution and KL divergence
are differentiable functions of 8*, we have the following
properties. The proofs are given in [5].

Property 1. The MMLOS model cost (8) is invariant under
differentiable, one-to-one transformations of the parame-
ters 0*, that is

Tog(y™,0%;7) = Los(y", 93 7),

where ¢ = g(6*) are the transformed parameters, g(-) is
a differentiable one-to-one function, and the prior distri-
bution 7, (0*) is appropriately transformed.

This property has the important implication that infer-
ences made by minimising the MMLO8 message length
will be invariant to the choice of model parameterisation.
This property is shared by the MML87 and SMML esti-
mators, but not (in general) by Bayes estimators.

Property 2. The model cost (8) satisfies the “Boundary
Rule” [1]; that is

0,(07) = {0 € ©,: A,(6710) < 6,(67)},

where 0.,(6*) is the Kullback—Leibler divergence of any
model on the boundary of 2., (6*).

This property implies that the expected uncertainty re-
gion can be completely, and uniquely, defined by the value
of the Kullback—Leibler divergence at the boundary of
the region, d,(0*). This property also suggests intrigu-
ing links with the normalised maximum likelihood code,
and the concept of distinguishable distributions [2]; these
links are interesting topics for future research.

5. LARGE SAMPLE BEHAVIOUR

The large sample behaviour of the MMLOS approximation
is now examined. Under the regularity conditions used in
the derivation of the MMLS87 approximation [1], we have

Vol (2,(6%) 7, (07) = q(2,(8") + on(L),
A, (6°]16)

1 *
§||9 —0"[|3, (6+) + 0n(1),

where ||x||% = x’Ax. Ignoring terms of order o,,(1), the
KL divergence is a quadratic function of @, and the uncer-
tainty region will be a k-dimensional ellipse. Following
similar arguments to those in [1], coupled with the rules
for integration of polynomials over balls [8], the following
assertion and detail lengths can be derived

7 (0) k
Ios(0;7) = —log | ——_ | — 21 k+2
08(60;7) 0g<J7 0)|%> 5 og(m(k +2))
+1ogr<’;+1> +o0,(1), (11)
k
Tog(y"|0;y) = —logp,(y"|0) + 5 + 0n(1). (12)

2

Comparing (11-12) to (1-2), it is clear that for large n
and sufficiently regular likelihood functions and prior dis-
tributions, the MMLO8 codelengths and MMLS87 code-
lengths differ only in their respective dimensionality con-
stants. As (11-12) make use of elliptical uncertainty re-
gions, which do not tessellate, the large sample MMLOS
codelength is actually slightly shorter than the MMLS87
codelength for £ > 1. Interestingly, by assuming that
the uncertainty region is congruent to an optimal quantis-
ing cell that tessellates the parameter space, the MMLOS
codelength can be used as a basis for a novel derivation of
the MMLS87 approximation (as done in Chapter 2, [5]).

Under suitable regularity conditions, the large sam-
ple MMLOS8 formulae (11-12) can be used to show that,
asymptotically, as the sample size n — oo, with the num-
ber of parameters £ fixed, the MMLO8 codelength is equiv-
alent to the Bayesian information criterion [9]. The usual
consistency properties of maximum likelihood parame-
ter estimation, and Bayesian information criterion model
structure selection, follow as a consequence.
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