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ABSTRACT

We continue the development of an abstract, though quan-
titative, theory of cognition which is rooted in philosoph-
ical considerations. Applications include classical Shan-
non theory and results from geometry. Special attention
is payed to inference which is treated as the outcome of a
situation of conflict between Nature and Observer, “you”.

1. INTRODUCTION

Last year, at WITMSE 2010, the author presented basic
elements of an abstract theory of cognition, cf. [1].

Topics which we will focus on this year include those
discussed in Section 3.

Emphasis will be on concrete results, especially con-
cerning identification. From the point of view of applica-
tions, these are the most useful ones and also the techni-
cally simplest to establish.

Two key characteristica of the theory presented is that
it is not tied to probabilistic notions and that it invokes
game theoretical considerations. The desirability of a non-
probabilistic approach has been advanced before, cf. [2],
[3], [4], [5] and also the recent survey [6]. The relevance
of games goes back to [7] and [8], cf. also [9], [10] and,
as an example of a utility-based work, [11].

2. ELEMENTS OF COGNITION

In this section we outline parts of the abstract theory under
development. Some passages are taken from [12].

2.1. Philosophical background

Observer is placed in a world and interacts with Nature
when confronted with situations from the world. Nature
does not have a mind and cannot act but is the holder of
“truth”. Observer seeks the truth but is restricted to belief.
Observer is guided by a creative mind which is exploited
to obtain knowledge as effortlessly as possible through ex-
periments and associated observations. Knowledge often
comes in the form of perception of phenomena from the
world.

“Belief is a tendency to act”1. Thus one should be
aware of possibilities to transform belief to more action-
oriented objects. Such objects we call controls. Descrip-

1a quotation from Good [13].

tion is the key to control through the design of experi-
ments. An experiment involves a preparation which en-
tails a limitation of the states – possible truth instances –
available to Nature. Theoretically possible but unrealistic
preparations should be distinguished from feasible prepa-
rations. Feasible preparations determine the knowable,
thus provide limitations to what can be known, hence to
obtainable information.

Description entails an effort which depends on the state
as well as on Observers belief. This is the key to quantita-
tive considerations. Insight into the knowable also comes
from description: “what you can know depends on what
you can describe”.

To be operational, description effort should satisfy the
perfect match principle, viz. that effort, given the state,
is the least under a perfect match, i.e. when belief equals
truth. The minimal effort, given the state, is called en-
tropy, and the excess effort, taking also belief into consid-
eration, is called divergence 2.

Interaction between Nature and Observer takes place
as if they are players in a two-person zero-sum game with
description effort as objective function, Nature as max-
imizer and Observer as minimizer. Ideally, one should
not only aim at equilibrium but also at bi-optimality, i.e.
the identification of optimal strategies which provides Ob-
server not only with insight about what can be inferred but
also on how.

2.2. Truth, belief and description

Given are sets X , the state space, and Y ⊇ X , the belief
reservoir, as well as a relation X ⊗ Y ⊆ X × Y , called
visibility. A non-empty set Ydet ⊆ Y determines certain
beliefs. We write y � x for (x, y) ∈ X⊗Y and say, either
that “y can see x”, that “x is visible from y” or similar. By
]y[ we denote the outlook from y, the set of x which are
visible from y, and by [x] we denote the watchout for x,
the set of y from which x can be seen. We asume that
x � x for all x and that there exists y from which all of X
is visible, i.e. ]y[= X .

A preparation is a non-empty subset P of X . A pair
(x, y) ∈ X ⊗ Y is an atomic situation. The watchout for

2the term “divergence” appears justified as the quantity typically
stands for the discrepancy, counted non-negative, between the “actual”
and the “best possible” performance. Regarding “entropy”, terminology
is less convincing and some other terminology for the abstract setting
may be preferable.



a preparation P is the set [P] =
⋂

x∈P [x], i.e. the set of
y from which all of P is visible. By assumption this set is
non-empty. We may write y � P in place of y ∈ [P]. For
many applications, X ⊗ Y = X × Y .

Quantitative considerations are enabled through a func-
tion Φ : X ⊗ Y →]−∞,∞], the description, also called
the effort function. This function determines the necessary
effort by Observer in any atomic situation. We assume that
Φ(x, y) = 0 if y ∈ Ydet and – the central assumption of
our modelling – that Φ satisfies the perfect match princi-
ple or is proper, essentially that Φ(x, y) ≥ Φ(x, x). More
precisely, we assume that there are functions H : X →
]−∞,∞], called entropy, and D : X⊗Y → [0,∞], called
divergence, such that, for all (x, y) ∈ X ⊗ Y , firstly,

Φ(x, y) = H(x) + D(x, y) , (1)

the linking identity, and, secondly, the fundamental in-
equality holds for D, i.e. D(x, y) ≥ 0 with equality if
and only if y = x.

The assumptions made are also expressed by saying
that (Φ,H,D) is an effort-based information triple. A
triple (U,M,D) for which (−U,−M,D) is an informa-
tion triple after this definition is a utility-based informa-
tion triple with U as utility function and M as maximal
utility (as before, D is the divergence).

Two descriptions which differ only by a positive scalar
are equivalent. The choice among equivalent descriptions
amounts to a choice of unit.

With a proper description Φ, we define a (strict) feasi-
ble preparation as one of the form {Φy = h} or a finite
intersection of such sets. Here, Φy denotes the marginal
function x → Φ(x, y) defined on ]y[. This definition
is sound on philosophical grounds. Further, it goes well
with a definition of core, really an abstract notion of expo-
nential families: For a family P of preparations (typically
feasible ones), core(P) is the set of y such that, for each
P ∈ P, there exists h such that Φy = h on P . See [14].

The choice of a proper effort function in concrete cases
of interest is essential for the theory to render useful re-
sults. As examples of appropriate choices, we refer to [1],
where cases of probabilistic modelling which lead to Tsal-
lis entropy are discussed.

2.3. Inference

Consider partial information “x ∈ P”.
The standard process of inference concerns the iden-

tification of a state in P , the inferred state. This will be
achieved by game theoretical methods involving the pre-
viously indicated game, γ = γ(P|Φ), with Φ as objec-
tive function. For γ, also belief instances will be identi-
fied. An inferred belief instance y∗ is, via the associated
control, more of an instruction to Observer on how best
to act regarding the set-up of experiments. Double infer-
ence gives Observer information both about what can be
inferred about truth and how.

The value of γ(P) for Nature is

sup
x∈P

inf
y�x

Φ(x, y) = sup
x∈P

H(x) , (2)

the MaxEnt-value, Hmax(P). Defining risk by

Ri(y|P) = sup
x∈P

Φ(x, y) ,

the value for Observer is the MinRisk-value of the game:

Rimin(P) = inf
y�P

Ri(y|P) . (3)

An optimal strategy for Nature is a strategy x∗ ∈ P
with H(x∗) = Hmax(P). An optimal strategy for Ob-
server is a strategy y∗ � P with Ri(y∗|P) = Rimin(P).

The game is in equilibrium if Hmax(P) = Rimin(P) <
∞. By ctr(P), the centre of P , we denote the set P ∩ [P].

Lemma 1 If γ(P) is in equilibrium and both players have
optimal strategies, then these strategies are unique, coin-
cide and belong to the centre of P .

Proof Let x∗ ∈ P be any optimal strategy for Nature
and y∗ � P any optimal strategy for Observer. By as-
sumption, such strategies exist. Then Φ(x∗, y∗) ≥ H(x∗) =
Hmax(P) = Rimin(P) = Ri(y∗|P) ≥ Φ(x∗, y∗), hence
Φ(x∗, y∗) = H(x∗) and we conclude that y∗ = x∗ as
desired. �

For a game in equilibrium with optimal strategies for
both players, the common unique strategy is the bi-optimal
strategy. In spite of the identity of the optimal strategies in
such cases, we often use different notation, typically with
x∗ when we focus on optimality for Nature and with y∗

when we focus on optimality for Observer.

Theorem 1 Let y∗ = x∗ ∈ ctr(P) with H(x∗) < ∞.
Then γ(P) is in equilibrium and has x∗ as bi-optimal
strategy if and only if, for all x ∈ P , Φ(x, y∗) ≤ H(x∗).
When this condition is satisfied, the Pythagorean inequal-
ity as well as the dual Pythagorean inequility holds, i.e.

∀x ∈ P : H(x) + D(x, y∗) ≤ H(x∗) , (4)
∀y � P : Rimin(P) + D(x∗, y) ≤ Ri(y|P) . (5)

Proof In brief: In view of the assumptions imposed,
the condition stated is one of the famous saddle-value in-
equalities often ascribed to Nash (but in the present simple
case due to von Neumann), and the other saddle-value in-
equality is automatically fulfilled due to the perfect match
principle. The result follows from these observations.

The Pythagorean inequality is a simple reformulation
of the inequality Φ(x, y∗) ≤ H(x∗) and the dual Pythagorean
inequality holds since, for y � P , Rimin(P)+D(x∗, y) =
H(x∗) + D(x∗, y) = Φ(x∗, y) ≤ Ri(y|P). �

The results above are developed for an effort-based in-
formation triple. Similar, or rather dual results apply to
utility-based information triples. Then Nature is a mini-
mizer, Observer a maximizer. We leave it to the reader to
formulate appropriate concepts and results.



3. SPECIAL FEATURES

3.1. Adding a geometric flavour

Let us look specifically at models of updating. For this, D
is a divergence function on X ⊗Y , i.e. it satisfies the fun-
damental inequality, y0 is a suitable prior and P a prepa-
ration such that Dy0 < ∞ on P . We consider the utility-
based information triple (U|y0

,Dy0 ,D) with U|y0
(x, y) =

D(x, y0) − D(x, y), representing updating gain. The as-
sociated game is denoted γ = γ(P|U|y0

). An optimal
strategy x∗ for Nature, if unique, is the D-projection of y0
on P , i.e. the unique element in P such that D(x∗, y0) =
Dy0

min(P), the infimum of D(x, y0) with x ∈ P . Given
y � P , the guaranteed updating gain for Observer asso-
ciated with the posterior y and the maximum guaranteed
updating gain are given by

Gtu(y|P, y0) = inf
x∈P

U|y0
(x, y) (6)

Gtumax(P, y0) = sup
y�P

Gtu(y|P, y0) . (7)

Before introducing geometry-like elements, note the
following result which follows directly from Theorem 1:

Theorem 2 A necessaary and sufficient condition that γ
is in equilibrium with x∗ ∈ ctr(P) as bi-optimal strat-
egy is that the Pythagorean inequality holds which, in this
case means that, for x ∈ P ,

D(x, y0) ≥ D(x, x∗) + D(x∗, y0) . (8)

If so, x∗ is the D-projection of y0 on P .

Next, consider the open divergence ball with centre y0
and radius r, defined as the set

B(y0, r) = {Dy0 < r} . (9)

Also consider open half-spaces of size a,

σ+(y, a|y0) = {x|U|y0
< a} , (10)

and, in particular, the open half-space

σ+(y|y0) = {x|U|y0
< D(y, y0)} . (11)

We say that a set is external to P if it is contained in
the complement of P . The following result characterizes
the values for the players in γ in geometrically flavoured
terms, also in cases where γ is not in equilibrium:

Proposition 1 (i) The value Dy0

min(P) is the size of the
largest ball B(y0, r) which is external to P , and the maxi-
mal guaranteed updating gain Gtumax(P, y0) is the supre-
mum of a for which there exists y � P such that the half-
space σ+(y, a|y0) is external to P .

(ii) The updating game γ(P|U|y0
) is in equilibrium

and has a bi-optimal strategy if and only if, for some y ∈
P , σ+(y|y0) is external to P . When this condition holds,
y is the bi-optimal strategy, in particular, y is the D-projection
of y0 on P .

If you consider the case where divergence is squared
Euclidean distance, the geometric significance of this re-
sult becomes clear.

3.2. Adding convexity

For this subsection, X is a convex topological space, the
marginals Φy are affine and the marginals Dx : y →
D(x, y) are lower semi-continuous on X .

Then, for every convex combination x =
∑
αixi,

H(x) =
∑

αi H(xi) +
∑

αi D(xi, x) . (12)

In particular, H is strictly concave on X .
Further, if H(x) < ∞, then, for every y ∈ Y , the

compensation identity holds:∑
αi D(xi, y) = D(x, y) +

∑
αi D(xi, x) . (13)

In particular, for y ∈ Y , the restriction of Dy to convex
preparations P with Hmax(P) <∞ is strictly convex.

Let us look at a game γ(P). From Theorem 1 we re-
alize the importance of the condition

∀x ∈ P : Φ(x, y∗) ≤ H(x∗) . (14)

with y∗ = x∗ ∈ P . It leads to equilibrium of γ(P) and
bi-optimality of x∗. In particular, it implies that H(x∗) =
Hmax(P). Under the extra assumptions imposed, (14) ac-
tually follows from the formally weaker condition H(x∗) =
Hmax as we shall now see:

Theorem 3 If P is convex and x∗ ∈ ctr(P) has finite en-
tropy, then the condition H(x∗) = Hmax(P) is not only
necessary, but also sufficient for (14) to hold, hence for
γ(P) to be in equilibrium with x∗ as bi-optimal strategy.

Proof Consider an element x ∈ P and apply (12) to
a convex combination of the form yn = (1 − 1

n )x∗ +
1
nx. We find that H(x∗) ≥ H(yn) ≥ (1 − 1

n ) H(x∗) +
1
n H(x)+ 1

n D(x, yn) from which we conclude that H(x)+
D(x, yn) ≤ H(x∗). Exploiting the assumed lower semi-
continuity, H(x) + D(x, x∗) ≤ H(x∗) follows. As x ∈ P
was arbitrary, (14) holds. Then apply Theorem 1. �

We find it important that Theorem 3 also applies to the
updating models of Theorem 2. Analyzing this it appears
that this is indeed the case, provided you assume that the
divergence function which Theorem 2 depends on satis-
fies the compensation identity. In this way one derives
abstract versions of by now classical results of Shannon
theory related to information projections and Pythagorean
inequalities. These results go back to Čencov and Csiszár,
cf. [15] and [16]. Also of relevance are [17] and [18]

3.3. Axiomatization

The key object which appears to be worth while axiom-
atizing is the informastion triples. Basic conditions are
centred around the linking identity, the fundamental iden-
tity, convexity of X and affinity of the marginals Φy . This
may be supplied with topological conditions. Details may
be found in [19]. One may start from atomic triples for
which X and Y are the reals or the non-negative reals.
A proces of integration leads to more complicated triples,



often related to Bregman divergencies. Other processes
involve relativization and randomization. A systematic
study as indicated also helps in defining concrete triples
of interest.
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