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ABSTRACT

Given K codes, a standard result from source coding tells
us how to design a single universal code with codelengths
within log(K) bits of the best code, on any data sequence.
Translated to the online learning setting of prediction with
expert advice, this result implies that for logarithmic loss
one can guarantee constant regret, which does not grow
with the number of outcomes that need to be predicted. In
this setting, it is known for which other losses the same
guarantee can be given: these are the losses that are mix-
able.

We show that among the mixable losses, log loss is
special: in fact, one may understand the class of mixable
losses as those that behave like log loss in an essential
way. More specifically, a loss is mixable if and only if the
curvature of its Bayes risk is at least as large as the cur-
vature of the Bayes risk for log loss (for which the Bayes
risk equals the entropy).

1. INTRODUCTION

For n ∈ N, let Y = {1, . . . , n} be the outcome space.
We will consider a prediction game where the loss of the
learner making predictions v1, v2, . . . ∈ V is measured
by a loss function ` : Y × V → [0,∞] cumulatively: for
T ∈ N,

Loss(T ) :=
T∑
t=1

`(yt, vt),

where y1, y2, . . . ∈ Y are outcomes. A loss ` is called
η-mixable if for every distribution P on actions V there
exists a single action vP such that

`(vP , y) ≤ −1
η log E

v∼P

[
e−η`(v,y)

]
for all y ∈ Y .

A loss is called mixable if there exists any η > 0 such that
it is η-mixable.

The learner has access to predictions vit, t = 1, 2, . . .,
i ∈ {1, . . . , N} generated by N experts E1, . . . , EN that
attempt to predict the same sequence. The goal of the
learner is to predict nearly as well as the best expert. A

These results have previously appeared in the COLT 2011 proceed-
ings [1]. More details can be found there.

strategy for the learner, called a merging strategy, is a
function

M :
∞⋃
t=1

(
Yt−1 × (VN )t

)
→ V,

which takes the outcomes y1, . . . , yt−1 and predictions vis,
i = 1, . . . , N for times s = 1, . . . , t and outputs an aggre-
gated prediction vMt , incurring loss `(yt, vMt ) when yt is
revealed. After T rounds, the loss ofM is LossM(T ) =∑T
t=1 `(yt, v

M
t ) and the loss of expert Ei is LossEi

(T ) =∑T
t=1 `(yt, v

i
t). When M is the aggregating algorithm

(which can be used for all losses considered in this paper)
[2], η-mixability implies for all t ∈ N, all i ∈ {1, . . . , N},

LossM(t) ≤ LossEi(t) +
lnN
η

. (1)

Conversely, if the loss function ` is not mixable, then it is
not possible to predict as well as the best expert up to an
additive constant using any merging strategy.

Thus determining η` (the largest η such that ` is η-
mixable) is equivalent to precisely bounding the predic-
tion error of the aggregating algorithm. The mixability of
several binary losses and the Brier score in the multiclass
case [3] is known. However a general characterisation of
η` in terms of other key properties of the loss has been
missing. We show how η` depends upon the curvature of
the conditional Bayes risk for ` when ` is a strictly proper
multiclass loss.

2. PROPER MULTICLASS LOSSES

Let ∆n := {(x1, . . . , xn)′ ∈ Rn : xi ≥ 0,
∑n
i=1 xi = 1}

denote the n-simplex, which is the set of all probability
vectors on n outcomes. We consider multiclass losses for
class probability estimation, where Y = {1, . . . , n} is the
set of possible classes. A loss function ` : ∆n → [0,∞]n

assigns a loss vector `(q) = (`1(q), . . . , `n(q)) to each
distribution q ∈ ∆n where `i(q) (= `(i, q) traditionally) is
the penalty for predicting q when outcome i ∈ Y occurs.
If the outcomes are distributed with probability p ∈ ∆n

then the risk for predicting q is just the expected loss

L(p, q) :=
n∑
i=1

pi`i(q).



The Bayes risk for p is the minimal achievable risk for that
outcome distribution,

L(p) := inf
q∈∆n

L(p, q).

We say that a loss is proper whenever the minimal risk
is always achieved by predicting the true outcome dis-
tribution, that is, L(p) = L(p, p) for all p ∈ ∆n. We
say a proper loss is strictly proper if there exists no q 6=
p such that L(p, q) = L(p). The log loss `log(p) :=
(− ln(p1), . . . ,− ln(pn))′ is strictly proper. Its correspond-
ing Bayes risk is Llog(p) = −

∑n
i=1 pi ln(pi), which is

the entropy of p.

3. THE BINARY CASE

Consider first the binary case, where n = 2. Then for
continuous, twice differentiable losses ` it is known [4]
that

η` = min
p∈[0,1]

`′1(p)`′′2(p)− `′′1(p)`′2(p)
`′1(p)`′2(p)(`′2(p)− `′1(p))

. (2)

When a binary loss ` is differentiable, properness implies
the stationarity condition [5]

p`′1(p) + (1− p)`′2(p) = 0,

from which it follows that

`′1(p)
p− 1

=
`′2(p)
p

=: w(p) =: w`(p),

where w or w` is called the weight function [5]. By differ-
entiating twice, one also finds that L′′(p) = −w(p). Sub-
stituting these expressions into (2) and simplifying, one
finds that many factors cancel, leading to

η` = min
p∈(0,1)

1
p(1− p)w(p)

.

Observing further thatL′′log(p) = −1
p(1−p) and sowlog(p) =

1
p(1−p) , we obtain the simple expression

η` = min
p∈(0,1)

wlog(p)
w`(p)

= min
p∈(0,1)

L′′log(p)
L′′(p)

. (3)

That is, the mixability constant of binary proper losses is
the minimal ratio of the weight functions for log loss and
the loss in question. In the next section we will show how
(3) generalises to the multiclass case (n > 2). That there
is a relationship between Bayes risk and mixability was
also pointed out (in a less explicit form) by Kalnishkan,
Vovk and Vyugin [6].

4. THE MULTICLASS CASE

Because probabilities sum up to one, any p ∈ ∆n is
fully determined by its first n − 1 components p̃ =
(p1, . . . , pn−1). Let ∆̃n = {p̃ : p̃ ∈ ∆n} be the set of
such (n− 1)-dimensional vectors. We have been implicit
about this in the previous section, but for the derivatives of

L to make sense in the multiclass case, we need to define
it as a function of p̃ rather than the full vector p:

L(p̃) =
n−1∑
i=1

pi`i(p̃) +
(

1−
n−1∑
i=1

pi

)
`n(p̃).

Let HL(p̃) denote the Hessian of L(p̃) and for any matrix
A let λmaxA denotes its maximum eigenvalue. Then in
the multiclass case we obtain the following generalisation
of (3):

Theorem 1. Suppose a loss ` satisfies Condition 1. Then
its mixability constant is

η` = inf
p̃∈int(∆̃n)

λmax

(
(HL(p̃))−1 · HLlog(p̃)

)
. (4)

The condition we require is as follows:

Condition 1. The loss ` is strictly proper, continuous on
∆n, and continuously differentiable on the relative inte-
rior relint(∆n) of its domain.

5. CONCLUSION

Under Condition 1, we have shown that mixability of a
loss is determined by whether the curvature of its Bayes
risk is as least as large as the curvature of the Bayes risk
for log loss.
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