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ABSTRACT

Bayesian learning is often accomplished with approxima-
tion schemes because it requires intractable computation
of the posterior distributions. In this paper, focusing on
the approximation scheme, variational Bayes method, we
investigate the relationship between the asymptotic be-
havior of variational stochastic complexity or free energy,
which is the objective function to be minimized by vari-
ational Bayes, and the generalization ability of the vari-
ational Bayes approach. We show an inequality which
implies a relationship between the minimum variational
stochastic complexity and the generalization error of the
approximate predictive distribution. This relationship is
also examined by a numerical experiment.

1. INTRODUCTION

Bayesian estimation provides a powerful framework for
learning from data. Recently, its asymptotic theory has
been established, which supports its effectiveness for la-
tent variable models such as the Gaussian mixture model
(GMM) and hidden Markov model (HMM). More specifi-
cally, a formula for evaluating asymptotic forms of Bayesian
mixture-type stochastic complexity or free energy was ob-
tained and the generalization errors of statistical models
have been intensively analyzed [1, 2].

Practically, however, Bayesian estimation requires some
approximation method since computing the Bayesian pos-
terior distribution is intractable in general. In this study,
we focus on the approximation method, variational Bayes
for Bayesian estimation. This method has been success-
fully applied to latent variable models such as mixture
models and HMMs [3, 4]. Furthermore, its asymptotic
analysis has progressed in several statistical models [5, 6].
More specifically, a formula for evaluating the asymptotic
form of the minimum variational free energy was derived
[6]. The variational free energy, what we call variational
stochastic complexity in this paper, is the objective func-
tion to be minimized by variational Bayes and provides
an upper bound for the Bayesian mixture-type stochastic
complexity.

In this paper, we provide as a byproduct of this analy-
sis, a quantity which is related to the generalization ability
of the variational Bayesian approach. Analysis of gen-
eralization ability of a learning machine when it is used
with the variational Bayesian approximation has been suc-

cessful in quite limited cases [7]. We show an inequality
which implies a relationship between the minimum varia-
tional stochastic complexity of latent variable models and
the generalization error of the approximate predictive dis-
tribution. This relationship is also examined by a numeri-
cal experiment of the variational Bayesian learning of the
GMM.

2. VARIATIONAL BAYES FOR LATENT
VARIABLE MODELS

Let yn
1 = {yi}n

i=1 be the latent (unobserved) variables
corresponding to the i.i.d. observations xn

1 = {xi}n
i=1

and consider the latent variable model with parameter w,

p(xn
1 |w) =

∑
yn

1

p(xn
1 , yn

1 |w) =
n∏

i=1

∑
yi

p(xi, yi|w),

where
∑

yn
1

denotes the summation over all possible real-
izations of the latent variables.

The Bayesian posterior distribution of the latent vari-
ables and parameter w is

p(yn
1 , w|xn

1 ) =
p(xn

1 , yn
1 |w)p0(w)∑

yn
1

∫
p(xn

1 , yn
1 |w)p0(w)dw

,

where p0(w) is the prior distribution of w. The poste-
rior distribution is intractable when the marginal likeli-
hood Z(xn

1 ) =
∑

yn
1

∫
p(xn

1 , yn
1 |w)p0(w)dw requires

the sum over exponentially many terms as in the Gaus-
sian mixture model (GMM) and the hidden Markov model
(HMM). In this article,

F (xn
1 ) = − log Z(xn

1 )

is referred to as the Bayesian mixture-type stochastic com-
plexity [8].

The variational Bayesian framework approximates the
Bayesian posterior distribution p(yn

1 , w|xn
1 ) of the hidden

variables and the parameters by the variational posterior
distribution q(yn

1 , w|xn
1 ), which factorizes as

q(yn
1 , w|xn

1 ) = q(yn
1 |xn

1 )q(w|xn
1 ), (1)

where q(yn
1 |xn

1 ) and q(w|xn
1 ) are probability distributions

on the hidden variables and the parameters respectively.
The variational posterior q(yn

1 , w|xn
1 ) is chosen so that



it minimizes the functional F [q], referred to as the varia-
tional stochastic complexity or variational free energy,

F [q] = F (xn
1 ) + K(q(yn

1 , w|xn
1 )||p(yn

1 , w|xn
1 )), (2)

where K(q(yn
1 ,w|xn

1 )||p(yn
1 , w|xn

1 )) is the Kullback in-
formation from the variational posterior q(yn

1 , w|xn
1 ) to

the Bayesian posterior p(yn
1 , w|xn

1 ). This reduces to the
following alternating optimization of q(yn

1 |xn
1 ) and q(w|xn

1 ),

q(w|xn
1 ) ∝ p0(w) exp

⟨
log p(xn

1 , yn
1 |w)

⟩
q(yn

1 |xn
1 )

, (3)

and

q(yn
1 |xn

1 ) ∝ exp
⟨
log p(xn

1 , yn
1 |w)

⟩
q(w|xn

1 )
. (4)

where ⟨·⟩p denotes the expectation with respect to p [3, 4].
Let

Fmin(xn
1 ) = min

q(yn
1 |xn

1 )q(w|xn
1 )

F [q]

be the minimum variational stochastic complexity. We as-
sume that p(x|w∗) with the parameter w∗ is the underly-
ing distribution generating the data xn

1 independently and
identically. Because of the non-identifiability of the latent
variable model, the set of true parameters

W ∗ ≡ {w̃|
∑

y

p(x, y|w̃) = p(x|w∗)},

is not generally a point but can be a union of several man-
ifolds with singularities [1].

For arbitrary w̃∗ ∈ W ∗,

F
∗
(n) ≡

⟨
Fmin(xn

1 ) + log p(xn
1 |w∗)

⟩
p(xn

1 |w∗)

is bounded from above by

U∗(n) = ⟨U∗(xn
1 )⟩p(xn

1 |w∗) , (5)

where U∗(xn
1 ) is given by

− log
∫

exp{
⟨

log
p(xn

1 , yn
1 |w)

p(xn
1 , yn

1 |w̃∗)

⟩
p(yn

1 |xn
1 ,w̃∗)

}p0(w)dw.

Asymptotic evaluation of U∗(n) is elaborated in [6] with
an alternative view of variational Bayes as a local varia-
tional approximation [9].

3. VARIATIONAL STOCHASTIC COMPLEXITY
AND GENERALIZATION ERROR

Let p(x, y|w̃∗) be the true distribution of the observed
variable x and the latent variable y which has the marginal
distribution p(x|w∗). We define by

G
∗
(xn

1 ) = K(p(x, y|w̃∗)||p̃∗(x, y|xn
1 )), (6)

the generalization error of the predictive distribution,

p̃∗(x, y|xn
1 ) = ⟨p(x, y|w)⟩q∗(w|xn

1 )

=
∫

p(x, y|w)q∗(w|xn
1 )dw, (7)

where q∗(w|xn
1 ) is the optimal approximating posterior

distribution (3) for q(yn
1 |xn

1 ) = p(yn
1 |xn

1 , w̃∗). We de-
note its mean by

G
∗
(n) =

⟨
G

∗
(xn

1 )
⟩∏n

i=1 p(xi|w∗)
.

Then, the following inequality holds,

U∗(n + 1) − U∗(n) ≥ G
∗
(n), (8)

where U∗(n) is the upper bound (5) of the minimum vari-
ational stochastic complexity.
(Proof of the inequality (8))
Let p∗i (y) = p(y|xi, w̃

∗). Then it follows that

U∗(xn+1
1 ) − U∗(xn

1 )

= − log

∫ ∏n+1
i=1 exp{

⟨
log p(xi,y|w)

p(xi,y|w̃∗)

⟩
p∗

i (y)
}p0(w)dw∫ ∏n

i=1 exp{
⟨
log p(xi,y|w)

p(xi,y|w̃∗)

⟩
p∗

i (y)
}p0(w)dw

= − log

⟨
exp{

⟨
log

p(xn+1, y|w)
p(xn+1, y|w̃∗)

⟩
p∗

n+1(y)

}

⟩
q∗(w|xn

1 )

= ⟨log p(xn+1, y|w̃∗)⟩p∗
n+1(y)

− log
⟨
exp{⟨log p(xn+1, y|w)⟩p∗

n+1(y)}
⟩

q∗(w|xn
1 )

(9)

≥
∑

y

p(y|xn+1, w̃
∗) log

p(xn+1, y|w̃∗)
⟨p(xn+1, y|w)⟩q∗(w|xn

1 )
. (10)

In the last inequality, we have applied Jensen’s inequality
due to the convexity of the function log

∫
exp(·)p(w)dw.

Taking expectation with respect to
∏n+1

i=1 p(xi|w∗) in both
sides of the above inequality yields the inequality (8). (Q.E.D)

The inequality (8) is analogous to the equality,

F ∗(n + 1) − F ∗(n) = G(n),

which holds for the average mixture-type stochastic com-
plexity,

F ∗(n) = ⟨F (xn
1 ) + log p(xn

1 |w∗)⟩p(xn
1 |w∗) ,

and the generalization error of the Bayesian predictive dis-
tribution,

G(n) = ⟨K(p(x|w∗)||p(x|xn
1 ))⟩∏n

i=1 p(xi|w∗) ,

where p(x|xn
1 ) = ⟨p(x|w)⟩p(w|xn

1 ).
If U∗(n) has the asymptotic form U∗(n) ≃ λ log n +

O(1) as in eq.(14), the inequality (8) suggests that

G
∗
(n) ≤ λ

n
+ o

(
1
n

)
. (11)

This means that the coefficient λ of the leading term of
U∗(n) is directly related to the generalization error of the
variational Bayes approach measured by eq.(6).

By applying Jensen’s inequality with respect to ⟨·⟩q∗(w|xn
1 )

and the convexity of the negative logarithmic function in
eq.(9), we further obtain,

U∗(n + 1) − U∗(n) ≤ G̃∗(n),



where G̃∗(n) is the expectation of the Gibbs generaliza-
tion error,

⟨K(p(x, y|w̃∗)||p(x, y|w))⟩q∗(w|xn
1 ) .

4. GAUSSIAN MIXTURE MODEL

Let g(x|µ) = 1√
2π

M exp{− ||x−µ||2
2 } be the M -dimensional

Gaussian density and consider the GMM with K compo-
nents,

p(x|w) =
∑

y

p(x, y|w),

where

p(x, y|w) =
K∏

k=1

{akg(x|µk)}y(k)

. (12)

where x ∈ RM and the parameter vector w consists of the
mean vectors {µk}K

k=1 and the mixing proportions a =
{ak}K

k=1 that satisfy 0 ≤ ak ≤ 1 for k = 1, · · · ,K and∑K
k=1 ak = 1. The latent variable y = (y(1), y(2), · · · , y(K))

indicates the component from which the datum x is gen-
erated, that is, y(k) = 1 if x is from the kth component
and y(k) = 0 otherwise. The variational Bayes frame-
work is successfully applied to this model using the prior
distribution,

p0(w) = p0(a)
K∏

k=1

p0(µk), (13)

where

p0(a) =
Γ(Kα0)
Γ(α0)K

K∏
k=1

aα0−1
k

is the Dirichlet distribution with hyperparameter α0 > 0
and

p0(µk) =

√
β0

2π

M

exp{−β0||µk − ν0||2

2
}

is the Gaussian distribution with hyperparameters β0 > 0
and ν0 ∈ RM . They are the conjugate prior distributions
for the mixing proportions and each mean vector respec-
tively.

Let the true distribution p(x|w∗) be the GMM with
K0(≤ K) components, that is, realizable by the model.
Then it can be shown that the upper bound of the mini-
mum variational stochastic complexity is asymptotically
bounded as

U∗(n) ≤ λ log n + O(1), (14)

where

λ =
{

(K − K0)α0 + MK0+K0−1
2 (α0 ≤ M+1

2 ),
MK+K−1

2 (α0 > M+1
2 ).

The proof is given in [5, 6].

5. NUMERICAL EXPERIMENT

We implemented the variational Bayesian learning of the
GMM with K components (12). For simplicity, we chose
the true distribution to be the standard normal distribution
in R2, g(x|(0, 0)T ). According to the choice of w̃∗ for
evaluating λ in eq.(14) [6], we consider this distribution as
the choice, w̃∗ = {{ã∗

k}, {µ̃∗
k}}K

k=1, where ã∗
1 = 1, ã∗

k =
0 for k = 2, · · · ,K, µ̃∗

k = (0, 0)T for k = 1, 2, · · · ,K
and focus on the case where α0 < (M + 1)/2 = 1.5.

Samples of the size n = 100 were generated by the
true distribution. The variational Bayes algorithm was ex-
ecuted 21 times with 20 different random initializations
and the one from the true parameter w̃∗. We adopted the
estimate q̂(w|xn

1 ) that attained the minimum of the varia-
tional stochastic complexity and evaluated the generaliza-
tion error,

G(xn
1 ) = K(p(x, y|w̃∗)||p̃(x, y|xn

1 )), (15)

where p̃(x, y|xn
1 ) = ⟨p(x, y|w)⟩q̂(w|xn

1 ) is the (approxi-
mate) predictive distribution.

To investigate the difference between G(xn
1 ) and G

∗
(xn

1 )
introduced in Section 3, we also evaluated G

∗
(xn

1 ), on the
expectation of which we can show that

G
∗
(n) ≃

{
M

2
+ (K − 1)α0

}
1
n

+ o

(
1
n

)
. (16)

Note that the coefficient M
2 + (K − 1)α0 is exactly

equal to λ in the inequality (14) for the case where K0 = 1
and α0 < M+1

2 . This means that the inequality (11) is
tight in this case.

Additionally, we calculated the generalization error of
the marginal distribution,

G(xn
1 ) = K(p(x|w∗)||p̃(x|xn

1 )) (17)

where p̃(x|xn
1 ) = ⟨p(x|w)⟩q̂(w|xn

1 ) is the marginal pre-
dictive distribution.

Fig.1 and Fig.2 show the generalization errors for n =
100 and K0 = 1 averaged over 100 trials with different
data sets. Fig.1 is for the case of K = 2 with differ-
ent values of the hyperparameter α0. We can see that for
small α0, the behavior of the generalization error of the
joint predictive distribution is well described by that of
G

∗
(n) and hence by the coefficient λ in the upper bound

(14). As α0 tends larger, the average of G(xn
1 ) also in-

creases, as does that of the generalization error G(xn
1 ) of

the marginal distribution, although only slightly. This may
be caused by overfitting. Fig.2 shows the average of the
generalization errors for the case of α0 = 0.2 with dif-
ferent number K of components. Again, we can see that
for small α0 the generalization error of the joint predictive
distribution is described by λ in eq.(14) while the gener-
alization error of the marginal distribution stays constant
even when the model becomes more redundant.

6. CONCLUSION

In this paper, we have investigated the average generaliza-
tion error of the variational Bayesian approach for latent
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Figure 1. Average generalization errors for K = 2 and
different α0 with 95%-confidence intervals. ◦: Average
errors of the joint distribution (15). +: Average errors
of the marginal distribution (17). ∗: Average errors of
the joint distribution with the variational parameter sub-
stituted by the true one (6). Solid line: Theoretical values
of the average error (16). The generalization errors are
multiplied by n = 100 for scaling purposes.

variable models by deriving inequalities on the difference
of the minimum variational stochastic complexity. We
have demonstrated that the coefficient of the asymptotic
minimum variational stochastic complexity partly describes
the behavior of the generalization error. Thorough in-
vestigation of the generalization ability of the variational
Bayes algorithm including the case for large α0 and for
the marginal predictive distribution will be left for future
work.

In the original (not approximate) Bayesian estimation,
the universal relation among the quartet, Bayes and Gibbs
generalization errors and Bayes and Gibbs training errors,
was proved [1]. It is an important undertaking to explore
such relationships among the quantities introduced in this
paper for the approximate Bayesian estimation.
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